Wednesday 21 January 2009

alternative beta-eta equality test


import Prelude hiding (lookup,($))
import Control.Monad

type Ref = Integer

data V
= Neutral N
| Lam (V -> V)
| Pi V (V -> V)
| Set
| Type

data N
= App N V
| Var Ref

Neutral n $ x = Neutral (App n x)
Lam f $ x = f x

lookup ((i, tau) : gamma) j
| i == j = Just tau
| otherwise = lookup gamma j
lookup [] _ = Nothing

eq gamma i f g (Pi tau sigmaF) = eq ((i, tau) : gamma) (i+1) (f $ x) (g $ x) (sigmaF x) where x = Neutral (Var i)
eq gamma i (Neutral n) (Neutral m) Set = maybe False (const True) (eqN gamma i n m)
eq gamma i s t Type = eqT gamma i s t

eqT gamma i (Pi s tF) (Pi u vF) = eqT gamma i s u && eqT ((i, s) : gamma) (i+1) (tF x) (vF x) where x = Neutral (Var i)
eqT gamma i Set Set = True

eqN gamma i (App n x) (App m y) = do
Pi tau sigmaF <- eqN gamma i n m
guard (eq gamma i x y tau)
return (sigmaF x)
eqN gamma _ (Var i) (Var j)
| i == j = lookup gamma i
| otherwise = Nothing

-- test = eq [] 0
-- (Lam (\x -> x))
-- (Lam (\f -> Lam (\x -> f $ x)))
-- (Pi (Pi Set (\_ -> Set)) (\_ -> (Pi Set (\_ -> Set))))

-- > test
-- True

Monday 12 January 2009

Data.Dynamic without typeclasses or unsafeCoerce


{-# LANGUAGE RankNTypes, GADTs #-}

data DYN t where
BOOL :: DYN Bool
INT :: DYN Integer
(:->:) :: DYN a -> DYN b -> DYN (a -> b)

data DYNAMIC where UnDYNAMIC :: DYN t -> t -> DYNAMIC
data Equal a b where REFL :: Equal x x

mkDyn :: DYN t -> t -> DYNAMIC
mkDyn code obj = UnDYNAMIC code obj

decide :: DYN t -> DYN u -> Maybe (Equal t u)
decide BOOL BOOL = Just REFL
decide INT INT = Just REFL
decide (u :->: v) (p :->: q) = do REFL <- decide u p; REFL <- decide v q; return REFL
decide _ _ = Nothing

unbox :: DYNAMIC -> DYN t -> Maybe t
unbox (UnDYNAMIC t e) u = do REFL <- decide t u; return e

list = [ mkDyn BOOL True, mkDyn INT 34, mkDyn (BOOL :->: INT) (\x -> if x then 32 else 56) ]

-- > unbox (list !! 0) BOOL
-- Just True
-- > unbox (list !! 1) BOOL
-- Nothing
-- > unbox (list !! 2) BOOL
-- Nothing
--
-- > unbox (list !! 0) INT
-- Nothing
-- > unbox (list !! 1) INT
-- Just 34
-- > unbox (list !! 2) INT
-- Nothing
--
-- > fmap ($ True) (unbox (list !! 2) (BOOL:->:INT))
-- Just 32
-- > fmap ($ False) (unbox (list !! 2) (BOOL:->:INT))
-- Just 56
-- > fmap ($ True) (unbox (list !! 1) (BOOL:->:INT))
-- Nothing

Tuesday 6 January 2009

More GADT nonsense


{-# LANGUAGE GADTs #-}

data CON f a fa k z where
CTR :: c -> CON f a c z z
VAR :: CON f a (a -> r) k z -> CON f a r (a -> k) z
REC :: CON f a (f a -> r) k z -> CON f a r (f a -> k) z

infixr :+:
data SUM f a ka z where
ZRO :: SUM f a (f a -> z) z
(:+:) :: CON f a (f a) k z -> SUM f a ka z -> SUM f a (k -> ka) z


size :: kase -> SUM f a kase Integer -> f a -> Integer
size kase code = size' kase code kase code
size' :: kase -> SUM f a kase Integer -> ka -> SUM f a ka Integer -> f a -> Integer
size' kase code ka ZRO = ka
size' kase code ka (t :+: ts) = size' kase code (ka (sizeCON kase code 0 t)) ts
sizeCON :: kase -> SUM f a kase Integer -> Integer -> CON f a i0 k Integer -> k
sizeCON kase code k (CTR _) = 0 + k
sizeCON kase code k (VAR r) = \_ -> sizeCON kase code (1 + k) r
sizeCON kase code k (REC r) = \x -> sizeCON kase code (size kase code x + k) r


dfs :: kase -> SUM f a kase [a] -> f a -> [a]
dfs kase code = dfs' kase code kase code
dfs' :: kase -> SUM f a kase [a] -> ka -> SUM f a ka [a] -> f a -> [a]
dfs' kase code ka ZRO = ka
dfs' kase code ka (t :+: ts) = dfs' kase code (ka (dfsCON kase code [] t)) ts
dfsCON :: kase -> SUM f a kase [a] -> [a] -> CON f a i0 k [a] -> k
dfsCON kase code k (CTR _) = k
dfsCON kase code k (VAR r) = \a -> dfsCON kase code (a : k) r
dfsCON kase code k (REC r) = \x -> dfsCON kase code (dfs kase code x ++ k) r


data Both a = a :&: a
(&) = VAR (VAR (CTR (:&:)))
both = (&) :+: ZRO
bothCase (&) (x :&: y) = x & y
bothCaseR (&) (x :&: y) = y & x

data List a = Nil | Cons a (List a)
nil = CTR (Nil)
cons = REC (VAR (CTR (Cons)))
list = nil :+: cons :+: ZRO
listCase nil cons Nil = nil
listCase nil cons (Cons x xs) = cons x xs
listCaseR nil cons Nil = nil
listCaseR nil cons (Cons x xs) = cons xs x

data Tree a = Leaf a | Branch (Tree a) (Tree a)
leaf = VAR (CTR (Leaf))
branch = REC (REC (CTR Branch))
tree = leaf :+: branch :+: ZRO
treeCase leaf branch (Leaf a) = leaf a
treeCase leaf branch (Branch l r) = branch l r
treeCaseR leaf branch (Leaf a) = leaf a
treeCaseR leaf branch (Branch l r) = branch r l

-- > size bothCaseR both (True :&: False)
-- 2
-- > size listCaseR list (Cons 'x' (Cons 'y' (Cons 'z' Nil)))
-- 3
-- > size treeCaseR tree (Branch (Leaf ()) (Branch (Branch (Leaf ()) (Leaf ())) (Leaf ())))
-- 4
-- > dfs listCaseR list (Cons 'x' (Cons 'y' (Cons 'z' Nil)))
-- "xyz"
-- > dfs treeCaseR tree (Branch (Leaf 4) (Branch (Branch (Leaf 3) (Leaf 5)) (Leaf 7)))
-- [4,3,5,7]

Sunday 4 January 2009

beta eta equality for STLC by NbE


{-# LANGUAGE NoMonomorphismRestriction #-}

import Prelude hiding (($))
import Control.Monad

type Ref = Int
newtype Scope a = Scope a deriving (Eq, Show)
data T = O | T :->: T deriving (Eq, Show)
data S = Var Ref | Lam T (Scope S) | App S S
| Quote Ref deriving (Eq, Show)

abstract i t = Scope (extract 0 t) where
extract r (Var j) = Var j
extract r (Lam t (Scope b)) = Lam t (Scope (extract (r+1) b))
extract r (App m n) = App (extract r m) (extract r n)
extract r (Quote j)
| j == i = Var r
| otherwise = Quote j

gamma |- Var i = Just (gamma !! i)
gamma |- Lam u (Scope b) = do v <- (u:gamma) |- b ; return (u :->: v)
gamma |- App m n = do u :->: v <- gamma |- m ; u' <- gamma |- n ; guard (u == u') ; return v

data V = VLam (V -> V)
| VNeutral N
data N = NApp N V
| NQuote Ref

VLam f $ x = f x
VNeutral n $ x = VNeutral (NApp n x)

eval delta (Var j) = delta !! j
eval delta (Lam _ (Scope b)) = VLam (\x -> eval (x:delta) b)
eval delta (App m n) = eval delta m $ eval delta n

------------------- OLD
-- r :: T -> V -> V
-- r O e = e
-- r (tau :->: sigma) f = VLam (\x -> r sigma (f $ (r tau x)))

------------------- NEW
r :: T -> V -> V
r O e = e
r (tau :->: sigma) f = f $ VLam (\f -> r sigma (VLam (\x -> f $ (r tau x))))



q i (VLam f) = Lam O (abstract i (q (i+1) (f (VNeutral (NQuote i)))))
q i (VNeutral n) = nq i n

nq i (NApp m n) = App (nq i m) (q i n)
nq i (NQuote j) = Quote j

nf tm = fmap (q 0 . flip r (eval [] tm)) ([] |- tm)

identity = Lam (O :->: O) (Scope (Var 0))
dollar = Lam (O :->: O) (Scope (Lam O (Scope (App (Var 1) (Var 0)))))


{- OLDER
{-# LANGUAGE NoMonomorphismRestriction #-}

import Control.Monad

type Ref = Int
newtype Scope a = Scope a deriving (Eq, Show)
data T = O | T :->: T deriving (Eq, Show)
data S = Var Ref | Lam T (Scope S) | App S S
| Quote Ref deriving (Eq, Show)

gamma |- Var i = Just (gamma !! i)
gamma |- Lam u (Scope b) = do v <- (u:gamma) |- b ; return (u :->: v)
gamma |- App m n = do u :->: v <- gamma |- m ; u' <- gamma |- n ; guard (u == u') ; return v

data V = VLam T (V -> V) | VNeutral N
| VQuote Ref
data N = NVar V | NApp N V
| NQuote Ref

lift i (Var j)
| j < i = Var j
| otherwise = Var (j+1)
lift i (Lam t (Scope b)) = Lam t (Scope (lift (i+1) b))
lift i (App m n) = App (lift i m) (lift i n)

abstract i t = Scope (extract 0 t) where
extract r (Var j) = Var j
extract r (Lam t (Scope b)) = Lam t (Scope (extract (r+1) b))
extract r (App m n) = App (extract r m) (extract r n)
extract r (Quote j)
| j == i = Var r
| otherwise = Quote j

eta u t = Lam u (Scope (App (lift 0 t) (Var 0)))

etaReify (u :->: v) (Lam t (Scope b)) delta gamma = VLam u (\x -> etaReify v b (x:delta) (u:gamma))
etaReify (u :->: v) t delta gamma = etaReify (u :->: v) (eta u t) delta gamma
etaReify O t delta gamma = betaEtaReify O t delta gamma

betaEtaReify _ (Var i) delta gamma = delta !! i
betaEtaReify tau (Lam t (Scope b)) delta gamma = etaReify tau (Lam t (Scope b)) delta gamma
betaEtaReify tau (App m n) delta gamma = app (betaEtaReify (sigma :->: tau) m delta gamma) (etaReify sigma n delta gamma)
where sigma = case gamma |- n of Nothing -> error "Type error" ; Just sigma -> sigma
app (VLam _ f) x = f x
app (VNeutral n) x = VNeutral (NApp n x)
app (VQuote j) x = VNeutral (NApp (NQuote j) x)

quote i (VLam t f) = Lam t (abstract i (quote (i+1) (f (VQuote i))))
quote i (VNeutral n) = nquote i n
quote i (VQuote j) = Quote j

nquote i (NVar v) = quote i v
nquote i (NApp n v) = App (nquote i n) (quote i v)
nquote i (NQuote j) = Quote j

betaEtaNF p = do
t <- [] |- p
return (quote 0 (etaReify t p [] []))

betaEtaEqual p q = do
t <- [] |- p ; t' <- [] |- q ; guard (t == t')
return (quote 0 (etaReify t p [] []) == quote 0 (etaReify t q [] []))

identity = Lam (O :->: O) (Scope (Var 0))
dollar = Lam (O :->: O) (Scope (Lam O (Scope (App (Var 1) (Var 0)))))

-- > betaEtaEqual identity dollar
-- Just True
-}