Friday, 27 June 2008

How could I fix this line spacing?

The line spacing is huge now for no reason, how do I change it back? :/
not that anyone reads this anyway..

Just a fun Show instance for functions


import Data.List
import Data.Maybe
import Control.Monad
import Control.Arrow

(*) `on` f = \x y -> f x * f y

class Inhabitants a where inhabitants :: [a]
instance Inhabitants () where inhabitants = [()]
instance Inhabitants Bool where inhabitants = [True,False]
instance (Inhabitants x, Inhabitants y) => Inhabitants (x,y) where inhabitants = liftM2 (,) inhabitants inhabitants
instance Inhabitants x => Inhabitants (Maybe x) where inhabitants = Nothing : map Just inhabitants

instance (Inhabitants p, Show p, Show q) => Show (p -> q) where
show f = "(fromJust . flip lookup " ++ show (map (id &&& f) inhabitants) ++ ")"


-- > not
-- (fromJust . flip lookup [(True,False),(False,True)])
-- > (fromJust . flip lookup [(True,False),(False,True)]) True
-- False
-- > \x -> Just Nothing
-- (fromJust . flip lookup [((),Just Nothing)])
-- > id
-- (fromJust . flip lookup [((),())])
-- > maybe not (&&)
-- (fromJust . flip lookup [(Nothing,(fromJust . flip lookup [(True,False),(False,True)])),(Just True,(fromJust . flip lookup [(True,True),(False,False)])),(Just False,(fromJust . flip lookup [(True,False),(False,False)]))])

Saturday, 21 June 2008

Pure Type Systems type checker in Prolog

They ( http://people.cs.uu.nl/andres/LambdaPi/index.html http://augustss.blogspot.com/2007/10/simpler-easier-in-recent-paper-simply.html ) said it was easy but actually it's very hard, of course these posts are very helpful though. My other reference is the book Lectures on the Curry-Howard Isomorphism (Studies in Logic and Foundations of Mathematics - Vol 149).

Assuming this doesn't have any bugs, does it..?

:- op(1200, xfx, :=).
:- op(150, xfx, ⊢).
:- op(140, xfx, :).
:- op(100, yfx, $).


sort(★).
sort(▢).

axiom(★,▢).

rule(★,★,★). % λ→
rule(★,▢,▢). % λP
rule(▢,★,★). % λ2
rule(▢,▢,▢). % λω


unfold(Term, TermU) :- unfold([],Term,TermU).
unfold(_, Sort, Sort) :- sort(Sort).
unfold(Γ, Ident, Value) :- member(Ident, Γ) -> Ident = Value ; ( Ident := ValueD ), unfold(ValueD, Value).
unfold(Γ, λ(Var:Type,Body), λ(Var:TypeU,BodyU)) :- unfold(Γ, Type, TypeU), unfold([Var|Γ], Body, BodyU).
unfold(Γ, π(Var:Type,Body), π(Var:TypeU,BodyU)) :- unfold(Γ, Type, TypeU), unfold([Var|Γ], Body, BodyU).
unfold(Γ, U $ V, P $ Q) :- unfold(Γ, U, P), unfold(Γ, V, Q).

alpha(X,Y) :- alpha([],X,Y).
alpha(_,Id,Id) :- !.
alpha(Γ,Var1,Var2) :- member(Var1=Var2,Γ).
alpha(Γ,λ(Var1:Type1,Body1), λ(Var2:Type2,Body2)) :- alpha(Γ,Type1,Type2), alpha([Var1=Var2|Γ],Body1,Body2).
alpha(Γ,π(Var1:Type1,Body1), π(Var2:Type2,Body2)) :- alpha(Γ,Type1,Type2), alpha([Var1=Var2|Γ],Body1,Body2).
alpha(Γ,U $ V,P $ Q) :- alpha(Γ,U,P), alpha(Γ,V,Q).

subst(X->Y,X,Y) :- !.
subst(_->_,Var,Var) :- atomic(Var).
subst(X->Y,λ(X:Type1,Body),λ(X:Type2,Body)) :- !, subst(X->Y,Type1,Type2).
subst(X->Y,λ(Z:Type1,Body1),λ(Z:Type2,Body2)) :- subst(X->Y,Type1,Type2), subst(X->Y,Body1,Body2).
subst(X->Y,π(X:Type1,Body),π(X:Type2,Body)) :- !, subst(X->Y,Type1,Type2).
subst(X->Y,π(Z:Type1,Body1),π(Z:Type2,Body2)) :- subst(X->Y,Type1,Type2), subst(X->Y,Body1,Body2).
subst(X->Y,U $ V,P $ Q) :- subst(X->Y,U,P), subst(X->Y,V,Q).

eval(λ(U:_,B) $ V, BetaVal) :- !, subst(U->V,B,Beta), eval(Beta,BetaVal).
eval(X $ Y, XY) :- !, eval(X,Xv), eval(Xv $ Y,XY).
eval(Value, Value).


type(Term, Type) :- unfold(Term,TermU), []TermU : Type.
hasType(Term, Type) :- type(Term, Type1), unfold(Type,TypeU), eval(TypeU, Type2), alpha(Type1,Type2).

_S1 : S2 :- axiom(S1,S2).
Γ ⊢ I : T :- once(member(I:T, Γ)).
Γ ⊢ λ(A:T,B) : π(A:Tv,C) :- Γ ⊢ T : S1, sort(S1), eval(T,Tv), [A:Tv|Γ]B : C. %%, /* sanity checks: */ Γ ⊢ π(A:Tv,C) : S2, sort(S2).
Γ ⊢ π(A:T,B) : S :- Γ ⊢ T : S1, [A:T|Γ]B : S2, rule(S1,S2,S).
Γ ⊢ P $ Q : T :- Γ ⊢ P : π(X:U,B), Γ ⊢ Q : V, alpha(U,V), eval(λ(X:U,B) $ Q,T).



id := λ(t:★, λ(x:t, x)).
idTy := π(x:★, π(e:x, x)).

const := λ(s:★, λ(t:★, λ(u:s, λ(v:t, u)))).
constTy := π(u:★, π(v:★, π(g0:u, π(g1:v, u)))).

%%bool := π(a:★, a -> a -> a).
bool := π(a:★, π(g1:a, π(g2:a, a))).
true := λ(a:★, λ(x:a, λ(y:a, x))).
false := λ(a:★, λ(x:a, λ(y:a, y))).

%%nat := π(u:★, u -> (u -> u) -> u).
nat := π(u:★, π(g1:u, π(g2:π(g3:u, u), u))).
zero := λ(a:★, λ(x:a, λ(f:π(g:a, a), x))).
%%succ := λ(n:nat, λ(a:★, λ(x:a, λ(f:(a -> a), f $ (n $ a $ x $ f))))).
succ := λ(n:nat, λ(a:★, λ(x:a, λ(f:π(g:a, a), f $ (n $ a $ x $ f))))).

add := λ(m:nat, λ(n:nat, m $ nat $ n $ succ)).

eq := λ(a:★, λ(x:a, λ(y:a,
λ(p:π(x:a, ★), π(g:p$x, p$y))))).

%%eq(a:★, x:a, y:a) := λ(p:π(x:a, ★), π(g:p$x, p$y)).

Thursday, 19 June 2008

Proving RLE encoding and decoding in Coq


Require Import List.
Require Import ListPlus.

Set Implicit Arguments.

Notation "y <- x" := (x -> y) (at level 94, left associativity, only parsing).

Definition compose A B C (f : C <- B) (g : B <- A) := fun x => f (g x).
Infix "∘" := compose (at level 30, right associativity).

(*
* rle = map (length &&& head) ∘ group
* unrle = concat ∘ map (uncurry replicate)
*
* is it always true that (unrle ∘ rle) x = x?
*
* notice:
* rle = f ∘ f'
* unrle = g' ∘ g
*
*)

Theorem sandwich : forall I M O
(f : O <- M) (f' : M <- I)
(g : O -> M) (g' : M -> I),
(forall x, (f ∘ g ) x = x) ->
(forall x, (f' ∘ g') x = x) ->
(forall x, (f ∘ f' ∘ g' ∘ g) x = x).
Proof.
unfold compose; intros.
rewrite (H0 (g x)).
apply H.
Qed.

(*
* so all that must be proved now is
* forall x, (concat ∘ group) x = x
* /\ forall x, (map (uncurry replicate) ∘ map (length &&& head))
*
*)

Theorem map_fuse : forall A B C (f : C <- B) (g : B <- A),
forall x, (map f ∘ map g) x = map (f ∘ g) x.
Proof.
induction x.
reflexivity.
simpl; rewrite <- IHx.
reflexivity.
Qed.

(*
* Now we have "only" to prove
* forall x, (concat ∘ group) x = x
* /\ forall x, (uncurry replicate ∘ (length &&& head)) x = x
*
* This is actually impossible though,
* (uncurry replicate ∘ (length &&& head)) "foo" = "fff"
*
* The reason rle works is because group segments the list
* into *homogenous* chunks, if we knew the input to (length && head)
* was a homogenous list then it would be correct and provable.
* It needs access to this precondition though
*
*)

Theorem sandwich' : forall I M O
(P : M -> Prop)
(f : O <- M) (f' : M <- I)
(g : O -> M) (g' : M -> I),
(forall x, (f ∘ g ) x = x) ->
(forall x, P x -> (f' ∘ g') x = x) ->
(forall x, P (g x)) ->
(forall x, (f ∘ f' ∘ g' ∘ g) x = x).
Proof.
unfold compose; intros.
rewrite (H0 (g x)).
apply H.
apply H1.
Qed.

Inductive Homogenous A : listP A -> Prop :=
| HEnd : forall u, Homogenous (nilP u)
| HOne : forall u, Homogenous (u:~:nilP u)
| HAdd : forall u us, Homogenous (u:~:us) -> Homogenous (u:~:u:~:us).
Hint Constructors Homogenous.

Inductive All X (P : X -> Prop) : list X -> Prop :=
| AllNil : All P nil
| AllCons : forall x xs, P x -> All P xs -> All P (x::xs).
Hint Constructors All.

Section RLE.

Variable A : Type.
Variable eq_dec : forall x y : A, { x = y } + { x <> y }.

Definition head_consP X (e : X) (l : list (listP X)) :=
match l with
| nil => nil
| x::xs => (e:~:x)::xs
end.

Fixpoint group (l : list A) : list (listP A) :=
match l with
| nil => nil
| x::xs =>
match xs with
| nil => nilP x::nil
| y::ys =>
match eq_dec x y with
| left equal => head_consP x (group xs)
| right not_equal => nilP x::group xs
end
end
end.
Fixpoint concat (l : list (listP A)) : list A :=
match l with
| nil => nil
| x::xs => appP' x (concat xs)
end.

Definition crush (l : listP A) : (nat * A) := (lengthP l, headP l).
Definition expand (t : nat * A) : listP A := let (n,e) := t in replicateP n e.

Definition rle := map crush ∘ group.
Definition unrle := concat ∘ map expand.

Functional Scheme group_ind := Induction for group Sort Prop.
Lemma concat_group_inv : forall x, (concat ∘ group) x = x.
unfold compose.
intro x; functional induction (group x).

reflexivity.

reflexivity.

Lemma cat_cons : forall u v vs, concat (head_consP u (v::vs)) = u :: concat (v::vs).
destruct vs; reflexivity.
Qed.

destruct (group (y :: _x)).
inversion IHl.
rewrite cat_cons.
rewrite IHl.
reflexivity.

simpl in *.
rewrite IHl.
reflexivity.
Qed.

Lemma expand_crush_inv : forall x, Homogenous x -> (expand ∘ crush) x = x.
unfold compose.
induction x.
reflexivity.
intro; inversion H.
rewrite <- H2 in IHx.
reflexivity.
simpl in *.
rewrite <- H2 in *.
rewrite <- IHx.
reflexivity.
assumption.
Qed.

(*
* some notes I had to write to crack this lemma,
*
* group [] = []
* group [x] = [[x]]
* group (x:y:ys) = if x == y then headCons x (group (y:ys))
* else [x] : group (y:ys)
* where headCons x (y:ys) = (x:y):ys
*
* Theorem: forall xs, All Homogenous (group xs)
*
* group [] ~ trivial
* group [x] ~ trivial
* group (x:y:ys) = [x] : group (y:ys)
* homo ^ ^ homo by induction
*
* group (x:x:ys) = headCons x (group (x:xs))
*
* (group (x:xs)) = ((x:p):q)
* homogenous ^ ^ all homogenous by induction
*
* group (x:x:ys) = headCons x ((x:p):q)
* = ((x:x:p):q)
* homo cons ^
*)

Lemma group_homo : forall x, All (@Homogenous A) (group x).
induction x.
simpl; auto.
destruct x.
simpl; auto.

simpl.
destruct (eq_dec a a0).

rewrite <- e in *.

Lemma paper_plane : forall xs x,
exists p, exists q,
group (x::xs) = ((x:~:p)::q) \/ group (x::xs) = ((nilP x)::q).
induction xs.
simpl.
intro x; exists (nilP x); exists nil; auto.
intro x.
simpl.
destruct (eq_dec x a).
rewrite <- e in *; clear e a.

destruct (IHxs x).
destruct H.
destruct H.
simpl in H.
rewrite H.
simpl.
exists (x :~: x0).
exists x1.
left; reflexivity.
simpl in H.
rewrite H.
simpl.
exists (nilP x).
exists x1.
left; reflexivity.

destruct (IHxs a).
destruct H.
destruct H.
simpl in H.
destruct xs.
exists (nilP a).
exists (nilP a :: nil).
right; reflexivity.
rewrite H.
exists (nilP a).
exists ((a :~: x0) :: x1).
right; reflexivity.
simpl in H.
rewrite H.
exists (nilP a).
exists (nilP a :: x1).
right; reflexivity.
Qed.

pose (paper_plane x a).
inversion e0.
inversion H.
inversion H0.

rewrite H1 in IHx.
simpl in H1.
rewrite H1.
simpl.
apply AllCons.
apply HAdd.
inversion IHx; auto.
inversion IHx; auto.

rewrite H1 in IHx.
simpl in H1.
rewrite H1.
simpl.
apply AllCons.
apply HOne.
inversion IHx.
assumption.

apply AllCons.
auto.
apply IHx.
Qed.

Theorem rle_inv : forall x, unrle (rle x) = x.
intro; unfold unrle, rle.
apply sandwich' with (P := All (@Homogenous A)).

exact concat_group_inv.

clear x; intros; rewrite map_fuse; induction x.
reflexivity.
simpl.
inversion H.
rewrite (IHx H3).
rewrite (expand_crush_inv H2).
reflexivity.

exact group_homo.
Qed.

End RLE.

Require Import Arith.

Eval compute in (rle eq_nat_dec (1::2::3::3::3::5::5::5::1::1::1::6::6::6::6::6::nil)).
(*
* = (0, 1) :: (0, 2) :: (2, 3) :: (2, 5) :: (2, 1) :: (4, 6) :: nil
* : list (nat * nat)
*)

Eval compute in (unrle (rle eq_nat_dec (1::2::3::3::3::5::5::5::1::1::1::6::6::6::6::6::nil))).
(* = 1::2::3::3 ::3 ::5 ::5 ::5::1::1::1::6::6::6::6::6::nil
* : list nat
*)

Sunday, 15 June 2008

Correctness of an Expression Compiler in Coq

This is based on Correctness Of A Compiler For Arithmetic Expressions and A type-correct, stack-safe, provably correct expression compiler in Epigram


Require Import List.

Fixpoint Tuple (types : list Set) : Type :=
match types with
| nil => unit
| t::ts => (t * Tuple ts)%type
end.

Inductive Exp : Set -> Type :=
| Num : nat -> Exp nat
| Boo : bool -> Exp bool
| Sum : Exp nat -> Exp nat -> Exp nat
| Eql : Exp nat -> Exp nat -> Exp bool
| Iff : forall (a : Set), Exp bool -> Exp a -> Exp a -> Exp a.

Fixpoint nat_eq_bool (x y : nat) {struct x} : bool :=
match x, y with
| O, O => true
| S x', S y' => nat_eq_bool x' y'
| _,_ => false
end.

Fixpoint eval (a : Set) (e : Exp a) : a :=
match e in Exp t return t with
| Num n => n
| Boo b => b
| Sum p q => eval _ p + eval _ q
| Eql x y => nat_eq_bool (eval _ x) (eval _ y)
| Iff _ b t e => if eval _ b then eval _ t else eval _ e
end.

(* example *)
Eval compute in
(eval _
(Iff _ (Eql (Num 7) (Sum (Num 4) (Num 3)))
(Sum (Num 5) (Num 8))
(Num 0))).

Notation "x --> y" := (x,y) (at level 120, right associativity).

Inductive INST : list Set * list Set -> Type :=
| PUSHN : forall s, nat -> INST (s --> nat::s)
| PUSHB : forall s, bool -> INST (s --> bool::s)
| SUM : forall s, INST (nat::nat::s --> nat::s)
| EQL : forall s, INST (nat::nat::s --> bool::s)
| COND : forall s, forall a, INST (bool::a::a::s --> a::s).

Inductive stack : list Set -> Type :=
| snil : stack nil
| scons : forall p q, INST (p --> q) -> stack p -> stack q.

Fixpoint compile
(a : Set) (e : Exp a)
(tail : list Set) (rest : stack tail)
{ struct e } : stack (a::tail) :=
match e in Exp a return stack (a::tail) with
| Num n =>
scons _ _ (PUSHN _ n) rest
| Boo b =>
scons _ _ (PUSHB _ b) rest
| Sum u v =>
scons _ _ (SUM _)
(compile _ u _
(compile _ v _ rest))
| Eql x y =>
scons _ _ (EQL _)
(compile _ x _
(compile _ y _ rest))
| Iff a b t e =>
scons _ _ (COND _ _)
(compile _ b _
(compile _ t _
(compile _ e _ rest)))
end.

Definition evinst :
forall p q,
forall (i : INST (p --> q)),
Tuple p -> Tuple q :=
fun p q i =>
match i in INST pq return Tuple (fst pq) -> Tuple (snd pq) with
| PUSHN _ n => fun s =>
(n, s)
| PUSHB _ b => fun s =>
(b, s)
| SUM _ => fun s =>
match s with
| (u, (v, s)) => (u + v, s)
end
| EQL _ => fun s =>
match s with
| (x, (y, s)) => (nat_eq_bool x y, s)
end
| COND _ _ => fun s =>
match s with
| (b, (t, (e, s))) =>
(if b then t else e, s)
end
end.

Fixpoint evstack typs (program : stack typs)
{ struct program } : Tuple typs :=
match program in stack typs return Tuple typs with
| snil => tt
| scons t ts i is => evinst _ _ i (evstack _ is)
end.

Eval compute in
(evstack _ (compile _
(Iff _ (Eql (Num 7) (Sum (Num 4) (Num 3)))
(Sum (Num 5) (Num 8))
(Num 0)) nil snil)).

Lemma eval_correct :
forall a (e : Exp a),
forall typs (program_tail : stack typs),
(eval a e, (evstack typs program_tail))
=
evstack (a::typs) (compile a e typs program_tail).
Proof.
induction e.

reflexivity.

reflexivity.

intros.
unfold compile; fold compile; simpl.
rewrite <- IHe1.
rewrite <- IHe2.
reflexivity.

intros.
unfold compile; fold compile; simpl.
rewrite <- IHe1.
rewrite <- IHe2.
reflexivity.

intros.
unfold compile; fold compile; simpl.
rewrite <- IHe1.
rewrite <- IHe2.
rewrite <- IHe3.
reflexivity.
Qed.